圆锥体积教学设计

时间:2024-11-04 04:36:32
圆锥体积教学设计

圆锥体积教学设计

在教学工作者开展教学活动前,通常需要准备好一份教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。我们该怎么去写教学设计呢?以下是小编整理的圆锥体积教学设计,希望能够帮助到大家。

圆锥体积教学设计1

设计意图:

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。

教学目标:

1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。

2、会应用公式计算圆锥的体积并解决一些实际问题。

3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。

教学重点:

使学生初步掌握圆锥体积的计算方法并解决一些实际问题

教学难点:

圆锥体积计算方法和推导过程。

教学过程:

一、复习铺垫:

1、揭示课题:今天我们一起来探究如何计算圆锥的体积。

2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?

二、实验操作:

1、请看接下来的2个实验:

2、实验准备:2组等底等高的圆柱、圆锥容器;水与沙子。

3、播放视频:

实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。

实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。

4、通过实验你们发现了什么?

三、公式推导:

1、通过两次的实验我们可以得出结论:

圆柱的体积是与它等底等高的圆锥体积的3倍;也就是说圆锥的体积是与它等底等高的圆柱体积的。

2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。

3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。

4、在应用圆锥体积公式时不要忘记乘!

四、知识应用

1、接下来我们应用公式解决实际问题。

题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1。2m。这堆沙子大约有多少立方米?(得数保留两位小数)

2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。

3、列式解答。(分步与综合)

五、知识小结:

今天我们学习了圆锥的体积计算:V= Sh= πr2h。

在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!

六、结束。

【课堂教学设想】

1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。

2、课堂上组织学生分小组实验:

圆柱与圆锥等底不等高时,实验结果会怎样?

圆柱与圆锥等高不等底时,实验结果会怎样?

“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?

圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?

3、课堂检测,促进知识内化。

【教学反思】

本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。

课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。

课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。

圆锥体积教学设计2

一、教学目标

1、知识与技能

理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法

通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

3、情感态度与价值观

渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

二、教学重、难点

重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

难点:理解圆锥体积公式的推导过程。

三、教具学具

不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

四、教学流程

(一)创设情境,提出问题

师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

生:我选择底面最大的;

生:我选择高是最高的;

生:我选择介于二者之间的。

师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么形状?(圆锥体)

生:你会求吗?

师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

……此处隐藏18364个字……计算公式。

1、实验操作。

师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。

2、学生分组实验,教师巡视。

3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?

4、强调等底等高。

5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)

6、练习(出示)

(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。

(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。

7、得出圆锥的体积计算公式。

8、用字母表示圆锥的体积计算公式。

三、巩固练习。

1、计算下面圆锥的体积。(只列式不计算)

底面积是6.28平方分米,高是9分米。

底面半径是6厘米,高是4.5厘米。

底面直径是4厘米,高是4.8厘米。

底面周长是12.56厘米,高是6厘米。

2、填空。

a圆锥的体积=(),用字母表示是()。

b圆柱体积的与和它()的圆锥的体积相等。

c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。

3、判断。(用手势表示)

a圆柱体的体积一定比圆锥体的体积大()

b圆锥的体积等于和它等底等高的圆柱体的()

c正方体、长方体、圆锥体的体积都等于底面积×高。()

d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

四、全课小结。

师:今天这结课学习了什么?通过今天的学习研究你有什么收获?

五、解决实际问题。

在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)

圆锥体积教学设计15

教学目标

1、使学生理解和掌握圆锥的特征及各部分名称。

2、使学生掌握测量圆锥的高的方法。

教学重点、难点:

认识圆锥体,掌握圆锥体体积的计算方法。圆锥体体积的计算方法的推导。

教具准备:

圆锥体物品、生活中圆锥体的应用图片、资料

教学过程:

一、揭示课题

今天我们来认识一种形状的物体——圆锥(板书课题)什么形状的物体是圆锥形的呢?

(实物呈现)

我们把象这样的几何形体叫做圆锥体,简称圆锥。

二、探究体验。

1、观察圆锥的特征

师:请同学们拿出圆锥体模型,看一看、想一想,你都想知道有关圆锥的哪些知识?

生可能提出:

a、我想知道圆锥的特征。

b、我想知道圆锥有几条高?它的高指的是什么?

c、我想知道圆锥的侧面展开是什么形状的?

师:请同学们拿出圆锥体模型,看一看、摸一摸、玩一玩、也可以猜一猜你能发现什么?

a我们发现圆锥上面细,下面粗。

b圆锥有一个尖尖的部分,摸起来很扎手。我们把它叫做顶点。

c圆锥有一个弯曲光滑的面,我们可以把它叫做侧面。这个面是曲面。

d圆锥有一个圆形的面,我们可以把他叫做底面。

e我们还发现圆锥的底面朝下立者,尖朝下不立者。

归纳:圆锥的底面是个圆,侧面是个曲面,有一个顶点。

2、圆锥的高

师:这个圆锥高多少?

学生就会想高在哪里?

师再说明什么是圆锥的高:

圆锥的高是从圆锥的顶点到底面圆心的距离。

师:圆锥的高有几条呢?(1条)

画图表示

3、测量圆锥的高。

师:通过刚才的学习我们掌握了圆锥的特征及圆锥各部分的名称,我们知道圆锥的高是从圆锥的顶点到底面圆心的距离,那怎样来测量圆锥的高呢?

学生自由测量,汇报。

师再课件演示测量圆锥高的方法、过程。

三、课堂总结

圆锥的认识教学反思:

本节课是在学生认识了圆和圆柱的相关知识的基

础上进行教学的,教学立足于促进学生的发展,紧密联系生活实际,在对教材进行了充分地分析后,教学设计我注重了以下几点:

1、注重联系生活实际,提高运用所学知识解决实际问题的意识与能力。

课前安排学生收集、整理生活中应用圆锥的实例和信息资料。教学时首先列举生活中大量的圆锥实物,在学生观察思考这些物体形状的共同特点,并从实物中抽象出几何形体的基础上引入。再引导学生对照模型和图形,互说圆锥的特征,加深对圆锥的认识。课后让学生创作一个圆锥的物品,进一步感受几何知识在生活中的应用,同时提高学生运用数学为生活服务的意识和能力。

2、给学生提供充足的与学习的时间和空间。

本节始终以学生的发展为本开展课堂有效教学,体现了学生为学习的主体,我们知道学生的数学能力的提高,在很大程度上,取决于主体意识的形式和主体参与能力的培养。要实现以学生的发展为本,应该注意让学生学习自行获得数学知识的方法,学习主动参与数学实践的能力,获得终生受用的数学创造才能。在本课中,无论问题的引入,圆锥概念的定义,高的寻找及测量方法的探索,老师都给予学生充足的时间进行尝试、研究和讨论中进行,让学生以不同的方式进行合作、交流,这样的过程,不仅提供了学生自主学习的机会,也提高了学生自主参与学习的意识和信心,大家积极发言,争先操作,参与率很高。

3、加强学生在操作中对空间与图形问题的思考。

从建构主义理论的基本理念来看:“知识不是被动接受的,而是由认知主体主动建构的”。教师的任务是引导和帮助学生进行再创造的工作,而不是把现有的知识灌输给学生。学生的能力可能比不上数学家,但通过类似的数学活动,也可以很好的获得数学或理解数学。在本课例中,老师积极地创造机会让学生自己去学习或者去探究问题。通过“看一看”,“摸一摸”,“想一想”,“玩一玩”,“猜一猜”等问题情境,让学生亲身感受数学,在“找”中学,在“测”中学,在“思”中学,培养学生动手操作能力、直观思维和抽象思维能力,使数学课堂教学“动”起来、“活”起来,让学生在“做”中学,使数学课堂焕发出生命活力。

4、合理运用传统教具、学具和现代多媒体辅助教学。

本课中,将传统教具、学具和现代多媒体网络技术有机的结合起来,直观、形象地展示大量圆锥形图片帮助学生建立圆锥的表象,以及动态演示圆锥侧面的展开过程、圆锥高的测量方法等,有效地突破教学中的难点,提高课堂教学效率。

《圆锥体积教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式